Sains Malaysiana 54(7)(2025): 1775-1783
http://doi.org/10.17576/jsm-2025-5407-11
Kesan
Pendopan Zr ke atas Morfologi, Struktur dan Sifat Optik
Filem Nipis Nanorods TiO₂
(Effect of Zr Doping on Morphological,
Structural and Optical Properties of TiO₂ Nanorod Thin Films)
MASLIANA MUSLIMIN1,* & MOHAMMAD HAFIZUDDIN HJ JUMALI2
1Bahagian Teknologi Industri, Agensi Nuklear
Malaysia, Bangi, 43000 Kajang, Selangor, Malaysia
2Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 4 Februari 2025/Diterima: 30 April 2025
Abstrak
Penyelidikan
ini dijalankan bagi mengkaji kesan pendopan unsur Zr terhadap morfologi,
struktur dan sifat optik filem nipis nanorod TiO2 (TiO2-NR). Filem nipis TiO2-NR
terdop Zr dengan kepekatan, 0.0 v/v % < x < 1.0 v/v % disediakan menggunakan kaedah hidroterma singkat pada suhu 170 °C selama 30 min. Analisis XRD menunjukkan pendopan Zr terhadap TiO2-NR telah menghasilkan tiga satah utama
iaitu (101), (111) dan (211). Namun, satah (111) lenyap pada kepekatan 0.5 v/v % dan 0.7 v/v %. Kecuali Zr > 0.7 v/v %, peningkatan kepekatan pendopan Zr dilihat telah
menyebabkan pengecilan saiz nanorod melalui imej FESEM. Analisis PL bagi
pendopan unsur Zr menunjukkan semua sampel mempunyai
nilai keamatan puncak pancaran aras dalaman lebih tinggi berbanding TiO2-NR. Keputusan ini menunjukkan pendopan
Zr memainkan peranan penting dalam mengurangkan kecacatan hablur TiO2NR
dan meningkatkan pancaran foton bagi aplikasi optoelektronik seperti LED.
Kata kunci: Diod pemancar cahaya (LED); fotoluminesen; rutil; TiO2-NR; ZrO2
Abstract
This
research was conducted to study the effect of Zr doping on the morphology,
structural and optical properties of TiO2 nanorod (TiO2-NR)
thin films. Zr-doped TiO2-NR thin films with a concentration of 0.0
v/v % < x < 1.0 v/v % were prepared using a facile hydrothermal
method at 170 °C for 30 min. XRD analysis shows that the Zr doping produced
three dominant planes, namely (101) (111) and (211) for TiO2-NR. However,
the (111) plane disappeared at concentrations of 0.5 v/v % and 0.7 v/v %. Except for Zr > 0.7 v/v %, FESEM images showed that the size of nanorods
is decreased with Zr doping. PL analysis displayed
that, all Zr-doped samples have higher intensity values of deep level emission
peaks than TiO2-NR. These results show that Zr doping plays an important role in reducing the
crystal defects of TiO2NR and increasing the photon emission for
optoelectronic applications.
Keywords: Light emitting diode (LED); photoluminescence; rutile; TiO2-NR; ZrO2
RUJUKAN
Abayomi, T.O., Albert O.J., Ilona, O.A., Arvo, M. & Malle, K. 2018.
Effect of Zr doping on the structural and electrical properties of spray
deposited TiO2 thin films. Proceedings of the Estonian Academy of
Sciences 67(2): 147-157.
Ahmad, A.A.,
Alakhras, L.A., Al-Bataineh, Q.M. & Ahmad, T. 2023. Impact
of metal doping on the physical characteristics of anatase titanium dioxide
(TiO2) films. Journal Material Science: Material Electron 34:
1552.
Archana, P.S.,
Arunava, G., Mashitah, M.Y. & Rajan, J. 2014. Charge transport in zirconium
doped anatase nanowires dye-sensitized solar cells: Trade-off between lattice
strain and photovoltaic parameters. Applied Physics Letters 105: 153901.
Bindra, P.,
Mittal, H., Sarkar, B.R. & Arnab, H. 2022. Synthesis of
highly ordered TiO2 nanorods on a titanium substrate using an
optimized hydrothermal method. Journal Electronic Materials 51:
1707-1716.
Bolbol, A.M., Omar, H.A.E., Hassan, E., Zaki, I.Z., Salah, A.S., Kamel, M.,
Ahmed, S.R. & Nasser. Y.M. 2022. The effect of Zr (IV) doping on TiO2 thin film structure and optical characteristics. Results in Physics 42: 105955.
Campet, G., Han, S.D., Wen, S.J., Manaud, J.P., Portier, Y., Xu, J. & Salardenne,
J. 1993. The electronic effect of Ti4+, Zr4+ and Ge4+ dopings upon the physical properties of In2O3 and
Sn-doped In2O3 ceramics: Application to new
highly-transparent conductive electrodes. Materials Science and Engineering (B) 19(3): 285-289.
Choudhury, B.,
Dey, M. & Choudhury, A. 2014. Shallow and deep trap emission and
luminescence quenching of TiO2 nanoparticles on Cu
doping. Applied Nanoscience 4: 499-506.
Ge, S., Sang,
D., Zou, L., Yao, Y., Zhou, C., Fu, H., Xi, H., Fan, J., Meng, L. & Wang,
C. 2023. A review on the progress of optoelectronic devices based on TiO2 thin
films and nanomaterials. Nanomaterials 13(7): 1141.
Glover, T.,
Grant, P., Gregory, W.D.C., Jared, B.B. & Matthew, A. 2012. Adsorption
ammonia by sulfuric acid treated zirconium hydroxide. Langmuir 28: 10478-10487.
Gomathi, T., Keerthana, B., Solaiyammal, T., Muniyappan, S.
& Murugakoothan, P. 2018. Hydrothermal synthesis and characterization
of TiO2 nanostructures prepared using different solvents. Materials
Letters 220: 20-23.
Guanxing, L., Ke, F., Yang, O., Wentao, Y., Hangsheng, Y., Ze, Z.
& Yong, W. 2021. Review surface study of the reconstructed anatase TiO2 (001)
surface. Progress in Natural Science: Materials International 31(1): 1-13.
Hameed, H.G.
& Abdulrahman, N.A. 2023. Synthesis of TiO2 nanoparticles by
hydrothermal method and characterization of their antibacterial activity: Investigation
of the impact of magnetism on the photocatalytic properties of the
nanoparticles. Physic Chemistry Research 11(4): 771-782.
Jung, Y.H., Park, K.H., Oh, J.S., Kim, D.H. &
Hong, C.K. 2013. Effect of TiO2 rutile nanorods on the
photoelectrodes of dye-sensitized solar cells. Nanoscale Research Letter 8: 37.
Khaled, A.,
Abdo, H., Nabil, A.Z., Mohammed, A.B., Gubran, A., Qasem, A.D., Hanadi, A.A.
& Lokanath, N.K. 2022. One-step hydrothermal synthesis of anatase TiO2 nanotubes for efficient photocatalytic CO2 reduction. ACS Omega 7(43):
38686-38699.
Kim, D., Jung,
U., Heo, W., Kumar, N. & Park, J. 2023. Arrays of TiO2 nanosphere monolayers on GaN-based LEDs for the improvement of light
extraction. Applied Sciences 13(5): 3042.
Kumarage,
G.W.C., Hakkoum, H. & Comini, E. 2023. Recent advancements in TiO2 nanostructures:
Sustainable synthesis and gas sensing. Nanomaterials 13(8):
1424.
Leshan, U.,
Charitha, T., Ramanee, W., Saravanamuthu, V. & Murthi, K. 2022. Fabrication
of TiO2 spheres and a visible light active α-Fe2O3/TiO2-rutile/TiO2-anatase
heterogeneous photocatalyst from natural ilmenite. ACS Omega 7(31):
27617-27637.
Ozgur, U., Alivov,
Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J.
& Morkoçd, H. 2005. A comprehensive review of ZnO materials and devices. Journal
of Applied Physics 98(4): 041301.
Pallotti, D.K.,
Orabona, E., Amoruso, S., Aruta, C., Bruzzese, R., Chiarella, F., Tuzi, S.,
Maddalena, P. & Lettieri, S. 2013. Multi-band photoluminescence in TiO2 nanoparticles-assembled films produced by femtosecond pulsed laser
deposition. Journal of Applied Physics 114(4): 043503.
Park, B.G.
2021. Photocatalytic activity of TiO2-doped Fe, Ag, and Ni with N
under visible light irradiation. Gels (Basel, Switzerland) 8(1):
14.
Pasche, A.,
Grohe, B., Mittler, S.A. & Charpentier, P. 2017. Zr-doped TiO2 nanoparticles synthesized via a sol–gel route and their application in
dye-sensitized solar cells for thermo-stabilization. Material Research
Express 4: 065501.
Paun, A.G.,
Dumitriu, C., Ungureanu, C. & Popescu, S. 2023. Silk fibroin/ZnO coated TiO2 nanotubes
for improved antimicrobial effect of Ti dental implants. Materials 16(17):
5855.
Peng, Q., Zhang,
Y., Jing, W., Peng, Z., Di, W., Chao, X., Yang, Z.
& Liang, P. 2024. Enhanced dielectric properties and improved
thermal stability in TiO2-based ceramics by Cu and Nb co-doping. Ceramics International 50(1): 2242-2248.
Rescigno,
R., Sacco, O., Venditto, V. Alessandra F., Giovanna D., Mariateresa L., Rosalba
F. & Vincenzo, V. 2023. Photocatalytic activity of P-doped TiO2 photocatalyst. Photochemical Photobiological Sciences 22: 1223-1231.
Rupak, K.P.
& Neetu, D. 2023. A brief review on the
synthesis of TiO2 thin films and its application in dye
degradation. Materials Today: Proceeding 72(5): 2749-2756.
Sekhar, M.C.,
Reddy, B.P., Mallikarjuna, K, Shanmugam, G., Chang, H.A. & Si, H.P. 2018.
Synthesis, characterization and analysis of enhanced photocatalytic activity of
Zr-doped TiO2 nanostructured powders under UV light. Materials
Research Express 5: 015024.
Takahashi, S.,
Uchida, S., Jayaweera, P.V.V., Shoji, K. & Hiroshi, S. 2023. Impact of
compact TiO2 interface modification on the crystallinity of
perovskite solar cells. Science Reports 13: 16068.
Tarasov, A.M.,
Sorokina, L.I., Dronova, D.A., Volovlikova, O., Trifonov, A.Y., Itskov, S.S.,
Tregubov, A.V., Shabaeva, E.N., Zhurina, E.S., Dubkov, S.V., Kozlov, D.V. &
Gromov, D. 2024. Influence of the Structure of hydrothermal-synthesized TiO2 nanowires
formed by annealing on the photocatalytic reduction of CO2 in H2O
vapor. Nanomaterials 14(16): 1370.
Tasnuva, Z.L., Md,
M.H.T., Foysal, A., Maria, F.M., Kazi, F.A. & Asrafuzzaman,
F.N.U. 2024. Effect of Ag-doping on morphology, structure, band gap and
photocatalytic activity of bio-mediated TiO2 nanoparticles. Results
in Materials 22: 100559.
Thomas, R.,
Mathavan, T., Ganesh, V., Yahia, I.S., Zahran, H.Y., AlFiafy, S. &
Kathalingam, A. 2020. Investigation of erbium co-doping on fluorine doped
tin oxide via nebulizer spray pyrolysis for optoelectronic applications. Optical and Quantum Electronics 52(5): 248.
Wang, Z.L.
2004. Zinc oxide nanostructures: Growth, properties, and applications. Journal
of Physics: Condensed Matter 16(25): R829.
Xu, T., Cui,
X., Lai, T., Ren, J., Yang, Z., Xiao,
M., Wang, B., Xiao, X. & Wang, Y. 2021. Gas
sensors based on TiO2 nanostructured materials for the detection
of hazardous gases: A review. Nano Materials Science 3(4): 390-403.
Zhao, D., Tang,
X., Liu, P., Huang, Q., Li, T. & Ju, L. 2024. Recent progress of
ion-modified TiO2 for enhanced photocatalytic hydrogen
production. Molecules 29: 2347.
Zheng, X.H.,
Sui, J.H., Zhang, X., Yang, Z.Y., Wang, H.B., Tian, X.H. &
Cai, W. 2013. Thermal stability and high-temperature shape memory effect
of Ti–Ta–Zr alloy. Scripta Materialia 68(12): 1008-1011.
*Pengarang
untuk surat-menyurat; email: masliana@nm.gov.my